Management of Brain Metastases

Sanjiv S. Agarwala, MD

Professor of Medicine
Temple University School of Medicine
Chief, Oncology & Hematology
St. Luke’s Cancer Center,
Bethlehem, PA, USA
Epidemiology
Brain Metastases

• Incidence (US):
 – Between 170-300,000 cases of brain metastasis per year
 • >25% of cancer patients overall have brain metastases at autopsy
 – #1 histology = Lung – 34% of patients
 – #2 histology = Breast – 30% of patients
 – #3 histology = Melanoma
 • 10-40% of patients with stage IV melanoma by imaging
 • more than 2/3 in autopsy series\(^1\)
 • Multifocal in 50% of cases\(^3\)
 – Melanoma incidence increasing (2 fold in last 25 years)\(^2\)

Melanoma Brain Metastases

- 10,000 pts with melanoma brain mets per year in US
- Melanoma has the highest propensity of all adult solid tumors to metastasize to the brain
- Risk Factors: males, mucosal, H&N primaries, Breslow depth, ulceration
- Median time to diagnosis from primary: 2.2-3.8 years
Presentation

- Silent: Screening MRI or CT
- Symptoms of increased IC pressure
- Sudden onset symptoms due to hemorrhage ("Tumor TIA")
- Is the initial site of metastases in 15% of new patients with MM
- Pts who respond to aggressive systemic therapy often relapse in the CNS
Management of Brain Metastases in Melanoma: Historical Approach

- Symptomatic
 - Steroids
 - Anticonvulsants
- Definitive
 - Surgery
 - Radiation
 - Chemotherapy
Overview of Management

Categorize patients into 3 groups

- Solitary brain metastasis
- Oligometastatic disease (2-4)
- Multiple brain metastases (>4)

Therapeutic Approach

- Local
- Systemic
Local Therapy
(Surgery, SRS, WBRT)
Solitary Metastasis

• Surgery better than WBRT
 – Improved local control and OS
• Surgery + WBRT better than Surgery alone
 – Improved local control but not OS
• SRS equivalent to WBRT
 – OS same, better QOL for SRS

Patchell et al; Vecht et al; Muacevic et al
Oligometastatic Disease

• WBRT: Increased dose or fraction no better than standard (RTOG)
• Level 1 evidence supports SRS in this subgroup
• Randomized trial of SRS +/- WBRT
 – Improved local control
 – No improvement in survival
• Surgery also an option
 – But no level 1 evidence compared to SRS
Multiple Brain Metastases

- WBRT is standard
- SRS is an option for selected patients
Systemic Therapy

- **Chemotherapy**
 - Temozolomide
 - Fotemustine

- **Immunotherapy**
 - Ipilimumab

- **B-raf Targeted therapy**
 - Vemurafenib/dabrafenib
Temozolomide

- Alkylating agent similar to DTIC
- Spontaneously converted to active metabolite (MTIC); DTIC undergoes hepatic conversion
- Crosses the blood-brain barrier
- 100% orally bioavailable
Study C95-086

A Phase II Study of Temozolomide (SCH 52365) Prior to Radiation Therapy in the Treatment of Patients with Brain Metastases from Malignant Melanoma
Phase II Study of Temozolomide in Brain Metastases prior to RT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No Prior Chemotherapy (n = 117)</th>
<th>Prior Chemotherapy (n = 34)</th>
<th>Total (N = 151)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Patients</td>
<td>%</td>
<td>No. of Patients</td>
</tr>
<tr>
<td>Objective Response</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Complete</td>
<td>1</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Partial</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Stable disease</td>
<td>34</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>54</td>
<td>46</td>
<td>19</td>
</tr>
<tr>
<td>Missing*</td>
<td>20</td>
<td>17</td>
<td>9</td>
</tr>
</tbody>
</table>

*Indicates patients who did not have a best objective response recorded by the investigator. Primary reasons were disease progression identified before scheduled scans; investigator decided not to perform scan; patients refused scheduled scans; or patients progressed more quickly than anticipated and died, or not medically stable to undergo scan procedures.

Agarwala SS et al, JCO June 2004
Fig 2. Kaplan-Meier estimate of overall survival for patients who had not received prior chemotherapy (n = 117) and for patients who had received prior chemotherapy (n = 34)

Median OS Arm A 3.5 months, Arm B 2.2 months

Systemic Therapy

• Chemotherapy
 – Temozolomide
 – Fotemustine

• Immunotherapy
 – Ipilimumab
 • Phase II trial (CA184-042)

• B-raf Targeted therapy
 – Vemurafenib/dabrafenib
Ipilimumab: brain metastasis

- Phase II trial on DCR using two different patient subgroups
- Corticosteroids: no (Arm A), yes (Arm B)
- Ipi dose: 10 mg/kg every 3 weeks
- Re-evaluations after 12 weeks

Lawrence et al, J Clin Oncol 28: 7s, 2010
Ipilimumab in Brain Metastases
CA184-042 Study Schema

Screening
Patients with melanoma and ≥1 brain mets

Cohort A
No steroids

Cohort B
Steroids
10 mg/kg Q3W x4

Induction

Maintenance
10 mg/kg Q12W

Follow up

Ipilimumab dosing:

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W4</th>
<th>W7</th>
<th>W10</th>
<th>W24</th>
<th>W36</th>
<th>W48+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induction</td>
<td>10 mg/kg Q3W x4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>10 mg/kg Q12W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tumor assessments

Non-CNS lesions:
B
W6
W12 W16 W24
Q12W → End of treatment

CNS lesions:
B
W6
W12 W16 W20
Q12W → End of treatment

Lawrence D et al JCO 28:7s, 2010
Baseline Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CA184-042: Cohort A (n=51)</th>
<th>CA184-045 (n=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (years)</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>Gender, n (female/male)</td>
<td>18/33</td>
<td>61/104</td>
</tr>
<tr>
<td>ECOG-PS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>71 (43)</td>
</tr>
<tr>
<td>1</td>
<td>25 (49.0)</td>
<td>71 (43)</td>
</tr>
<tr>
<td>2</td>
<td>26 (51.0)</td>
<td>22 (13.3)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Any prior systemic therapy, n (%)</td>
<td>40 (78.4)</td>
<td>165 (100)</td>
</tr>
<tr>
<td>Prior radiotherapy to brain, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole brain</td>
<td>20 (39.2)</td>
<td>NA</td>
</tr>
<tr>
<td>Gamma knife/targeted</td>
<td>17 (33.3)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>4 (7.8)</td>
<td>NA</td>
</tr>
</tbody>
</table>

ECOG-PS = Eastern Cooperative Oncology Group performance status; NA = not available
Ipilimumab: brain metastasis

Arm A (n = 51)

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>brain</th>
<th>non-CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>SD</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>BORR (WHO)</td>
<td>9.8%</td>
<td>15.7%</td>
<td>13.7%</td>
</tr>
<tr>
<td>DCR</td>
<td>17.6%</td>
<td>23.5%</td>
<td>27.5%</td>
</tr>
</tbody>
</table>

Lawrence et al, J Clin Oncol 28: 7s, 2010
Ipilimumab: brain metastasis

Arm B (n = 21)

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>brain</th>
<th>non-CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BORR (WHO)</td>
<td>4.8%</td>
<td>4.8%</td>
<td>4.8%</td>
</tr>
<tr>
<td>DCR</td>
<td>4.8%</td>
<td>9.5%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Lawrence et al, J Clin Oncol 28: 7s, 2010
Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>CA184-042: Cohort A (n=51)</th>
<th>CA184-045<sup>a</sup> (n=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS, median, months (95% CI)</td>
<td>7.0 (4.1, 10.8)</td>
<td>6.0 (3.9, 9.8)</td>
</tr>
<tr>
<td>OS rate at 1 year</td>
<td>31%</td>
<td>20%</td>
</tr>
<tr>
<td>OS rate at 2 years</td>
<td>26%</td>
<td>NA<sup>b</sup></td>
</tr>
</tbody>
</table>

^aIn this study, all patients lost to follow-up were assumed dead
^bNot available – insufficient data for accurate calculation
Durable Brain Responses in 2 Patients From CA184-042: Cohort A

A: Partial response (PR) in brain and PR in total tumor burden, duration 11+ months

Baseline

Week 16
Ipilimumab: brain metastasis

<table>
<thead>
<tr>
<th></th>
<th>Arm A (n=51)</th>
<th>Arm B (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>median OS months</td>
<td>7.0 months</td>
<td>5.1 months</td>
</tr>
<tr>
<td>median PFS</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>median duration of PRs</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>duration of SDs</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>

no specific CNS toxicity
Summary of Ipilimumab Data in Melanoma Brain Metastases

• Response rates are similar in and out of the brain
• Median survival is about 7 months in phase II trial
• Toxicity is similar in patients with and without brain metastases – no unique CNS toxicity identified
NIBIT trial ipilimumab + fotemustine

- Results
 - 40% overall disease control
 - 50% CNS disease control
- Toxicities 55% gr 3-4
 - Myelosuppression ~25%
 - Hepatotoxicity (transaminase elevations) ~24%
- Phase III of fotemustine + ipilimumab has started

Presented By Kim Allyson Margolin, MD at 2013 ASCO Annual Meeting
Systemic Therapy

- **Chemotherapy**
 - Temozolomide
 - Fotemustine

- **Immunotherapy**
 - Ipilimumab

- **B-raf Targeted therapy**
 - Vemurafenib/dabrafenib
Phase II two-cohort study in melanoma brain metastasis

Cohort A (n = 89) (No prior brain treatment)
Cohort B (n = 83) (Prior brain treatment)

Dabrafenib 150 mg BID

Screened (N = 325)
Enrolled (n = 172)

✓ Metastatic melanoma
✓ Centrally confirmed BRAF$^{V600E/K}$ mutation
✓ Asymptomatic brain metastases
✓ No prior treatment with MEK or BRAF inhibitors

• Primary endpoint: intracranial response (investigator assessed, OIRR) for BRAFV600E mutation-positive patients
• Secondary endpoints: OIRR for BRAFV600K mutation-positive patients; ORR, DoR (intracranial and overall), PFS and OS for BRAF$^{V600E/K}$ mutation-positive patients

DoR, duration of response; OIRR, overall intracranial response rate; ORR, overall response rate; PFS, progression-free survival

Long et al, Lancet Oncology 2012
No prior brain treatment: Cohort A
BRAFV600E mutation-positive patients maximal intracranial target lesion reduction

OIRR: 39%
ORR: 38%
Intracranial disease control rate: 81%
Overall disease control rate: 80%

Long et al, Lancet Oncology 2012
Prior brain treatment: Cohort B
BRAFV600E mutation-positive patients maximal intracranial target lesion reduction

OIRR: 31%
ORR: 31%
Intracranial disease control rate: 89%
Overall disease control rate: 83%

Long et al, Lancet Oncology 2012
BREAK-MB: OS in $BRAF^{V600E}$ Mutation–Positive Patients

No prior brain treatment
Median OS: 33.1 weeks (95% CI, 25.6 weeks-NR)

Prior brain treatment
Median OS: 31.4 weeks (95% CI, 25.7 weeks-NR)

Cohort A, V600E 74 73 71 69 62 43 29 17 10 2 1
Cohort B, V600E 65 65 65 60 51 39 29 20 7 1 0

BREAK-MB: Summary of Efficacy Endpoints for BRAF^{V600E} Mutation-positive Patients

<table>
<thead>
<tr>
<th></th>
<th>No prior brain treatment</th>
<th>Prior brain treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIRR, %</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Intracranial disease control, %</td>
<td>81</td>
<td>89</td>
</tr>
<tr>
<td>ORR, %</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>Median PFS, weeks</td>
<td>16.1</td>
<td>16.6</td>
</tr>
<tr>
<td>Median OS, weeks</td>
<td>33.1</td>
<td>31.4</td>
</tr>
</tbody>
</table>
Pilot Study of Vemurafenib in Patients With mM With Brain Metastases

• Study aims: Safety and tolerability; Efficacy (BORR)*

Screened (n=35)

Enrolled (n=24)
ITT population

Safety Population (n=24)

Total Screening Failures (n=11, 31.4%)
• BRAF mutation test negative (n=4)
• Failed eligibility criteria (n=1)
• Other (n=6)

Deaths (n=19)
• Disease progression (n=18, 75.0%)
• Adverse event (n=1, 4.2%)

Treatment Discontinuations (n=24, 100%)
• Disease progression (n=22, 91.7%)
• Withdrawal of consent (n=1, 4.2%)
• Adverse event (n=1, 4.2%; Ileus, Grade 3)

*Based on RECIST V1.1
Vemurafenib in Patients With Brain Metastases: Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. of Patients (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td>13 (54.2)</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>47 (24-70)</td>
</tr>
<tr>
<td>Median baseline number of brain mets, n (range)</td>
<td>4.0 (1-20)</td>
</tr>
<tr>
<td>Previous treatment for brain mets, n (%)</td>
<td></td>
</tr>
<tr>
<td>WBRT</td>
<td>14 (58.3)</td>
</tr>
<tr>
<td>Precision RT</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td>Surgery</td>
<td>4 (16.7)</td>
</tr>
<tr>
<td>Systemic therapy</td>
<td>20 (83.3)</td>
</tr>
</tbody>
</table>

\(^a\)RECIST v1.1.

Vemurafenib in Patients With Brain Metastases: Maximum Tumor Shrinkage

Vemurafenib in brain and liver mets
(from Reinhard Dummer, Zurich)
Melanoma Brain Metastases: Summary

- Local control and therapy is still the backbone of management
 - RPA helps treatment decisions
 - SRS and surgery with or without WBRT
- New systemic therapeutic options are changing the treatment paradigm
 - High response rates, DCR and OS with targeted therapies
 - Promising survival, safe with ipilimumab
Change in Treatment Paradigm

Patient Selection: Check mutational status

Treatment Selection
- Ipilimumab
- B-raf/MEK-/c-kit-inhibitors
- Chemotherapy
- Clinical trials
and/or conventional surgery, radiotherapy